提示
看到百度 Geek 说的一篇结合具体场景聊分布式 ID 设计的文章,感觉挺不错的。于是,我将这篇文章的部分内容整理到了这里。原文传送门:分布式 ID 生成服务的技术原理和项目实战 。
网上绝大多数的分布式 ID 生成服务,一般着重于技术原理剖析,很少见到根据具体的业务场景去选型 ID 生成服务的文章。
提示
看到百度 Geek 说的一篇结合具体场景聊分布式 ID 设计的文章,感觉挺不错的。于是,我将这篇文章的部分内容整理到了这里。原文传送门:分布式 ID 生成服务的技术原理和项目实战 。
网上绝大多数的分布式 ID 生成服务,一般着重于技术原理剖析,很少见到根据具体的业务场景去选型 ID 生成服务的文章。
本文重构完善自6000 字 | 16 图 | 深入理解 Spring Cloud Gateway 的原理 - 悟空聊架构这篇文章。
Spring Cloud Gateway 属于 Spring Cloud 生态系统中的网关,其诞生的目标是为了替代老牌网关 Zuul。准确点来说,应该是 Zuul 1.x。Spring Cloud Gateway 起步要比 Zuul 2.x 更早。
这是一则或许对你有用的小广告
经历过技术面试的小伙伴想必对 CAP & BASE 这个两个理论已经再熟悉不过了!
我当年参加面试的时候,不夸张地说,只要问到分布式相关的内容,面试官几乎是必定会问这两个分布式相关的理论。一是因为这两个分布式基础理论是学习分布式知识的必备前置基础,二是因为很多面试官自己比较熟悉这两个理论(方便提问)。
我们非常有必要将这两个理论搞懂,并且能够用自己的理解给别人讲出来。
CAP 理论/定理起源于 2000 年,由加州大学伯克利分校的 Eric Brewer 教授在分布式计算原理研讨会(PODC)上提出,因此 CAP 定理又被称作 布鲁尔定理(Brewer’s theorem)
在分布式系统中,不同的节点进行数据/信息共享是一个基本的需求。
一种比较简单粗暴的方法就是 集中式发散消息,简单来说就是一个主节点同时共享最新信息给其他所有节点,比较适合中心化系统。这种方法的缺陷也很明显,节点多的时候不光同步消息的效率低,还太依赖与中心节点,存在单点风险问题。
于是,分散式发散消息 的 Gossip 协议 就诞生了。
Gossip 直译过来就是闲话、流言蜚语的意思。流言蜚语有什么特点呢?容易被传播且传播速度还快,你传我我传他,然后大家都知道了。
Paxos 算法是 Leslie Lamport(莱斯利·兰伯特)在 1990 年提出了一种分布式系统 共识 算法。这也是第一个被证明完备的共识算法(前提是不存在拜占庭将军问题,也就是没有恶意节点)。
本文由 SnailClimb 和 Xieqijun 共同完成。
当今的数据中心和应用程序在高度动态的环境中运行,为了应对高度动态的环境,它们通过额外的服务器进行横向扩展,并且根据需求进行扩展和收缩。同时,服务器和网络故障也很常见。
分布式配置中心 相关的面试题为我的知识星球(点击链接即可查看详细介绍以及加入方法)专属内容,已经整理到了《Java 面试指北》中。
这是一则或许对你有用的小广告
本文来自小白 debug投稿,原文:https://juejin.cn/post/7121882245605883934 。
我想起了我刚工作的时候,第一次接触 RPC 协议,当时就很懵,我 HTTP 协议用的好好的,为什么还要用 RPC 协议?